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pairs of coupled two-level tunnelling units 
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Abstract. The equation of motion method for the Green functions is applied to study the 
behaviour of pairs of interacting two-level tunnelling units, coupled with a phonon field 
to calculate, within the framework of the small-polaron theory, the dynamic susceptibilities 
and relaxation rates of the system. Explicit expressior.; fgr :here quantities arc cbtained 
i n  the Debye approximation. 

i. iniroluciion 

In recent years intense study, both theoretical and experimental, of glasses and glassy 
materials has been carried out (Anderson et al 1972, Phillips 1972, Hunklinger and 
Raychaudhuri 1986, for reviews see Phillips 1981). By means of the two-level system 
(or the tunnelling centre) model the main anomalous low-temperature properties of 
these materials, such as the linear temperature dependence and the logarithmic time 
dependence of the specific heat and the TZ dependence of the thermal conductivity, 
was successfully explained. However one of the major problems-that concerning the 
microscopic structure of the tunnelling units and the universality regarding their density 
of states and their coupling to phonons-has as yet remained unresolved. The question 
about the nature of the tunnelling states, however, does not arise in the so-called glassy 
crystals or orientational glasses (Klein 1984, Sethna and Chow 1985). These are 
crystalline solids containing certain impurities capable of a tunnelling motion which 
give rise to similar anomalous low-temperature behaviour as-as yet unidentified-two- 
level tunnelling units in amorphous materials. Examples of such tunnelling centres are 
the ions OH-, CN-, NO;, etc. dissolved in alkali host lattices. The dynamics of the 
dilute systems of many tunnelling centres (in which case the centres may be considered 
as isolated units) and their influence on thermal and dielectric properties of doped 
crystais are weii understood (Cor reviews see Narajiaiiamwii aiid %hi 1970, Bridges 
1975). At higher concentrations of tunnelling centres, the glassy behaviour sets in, 
similar to that of other amorphous materials. Whereas in  amorphous solids the broad 
distribution of energy spectrum originates in a distribution of tunnelling parameters 
and/or asymmetries of the ensemble of the (non-interacting) tunnelling units, it seems 
that in orientational glasses the broad distribution results from a distribution of 
interactions between tunnelling units. 

The successful explanation of the low-temperature properties of glassy materials 
is based essentially on the mean field theory. In the case of amorphous solids, the 
mean field to which a chosen two-level system (TLS) is coupled is set up by the random 
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surroundings, creating a distribution in tunnelling and/or asymmetry parameters of 
double-well potentials in which TLS are confined, while in case of orientational glasses 
the mean field is built up by the positional and orientational disorder of (identical) 
tunnelling centres which leads to a distribution in coupling constants. 

In some cases, pairs of coupled centres seem to determine certain macroscopic 
properties; measuring the dielectric constant of several alkali halide crystals doped 
with paraelectric and paraelastic OH--centres, Potter and Anderson (1981) have 
observed discrete features which were attributed to reorientational processes of pairs 
of coupled centres (Moy et a /  1983, Kranjc 1990). It is the aim of the present paper 
to develop a low-temperature dynamics of pairs of coupled two-level tunnelling centres 
(which may be viewed as prototypes of structural units in both the amorphous solids 
and in orientational glasses), starting from the properties of isolated centres. 

In section 2 the model Hamiltonian for the problem is presented. Treating the case 
of strong coupling between TLS and the crystal lattice, the canonical transformation 
to displaced lattice oscillators is applied whence the Debye-Waller screening of the 
tunnelling frequency results, and then linearization with respect to the phonon operators 
is performed. In section 3, the Green functions and the corresponding dynamical 
susceptibilities are introduced, and in section 4 the Green functions and relaxation 
rates for a pair of coupled TLS are  calculated. Section 5 gives some concluding remarks. 

2. Hamiltonian of a cluster of TLS 

A cluster of TLS will be described by a Hamiltonian that is a simple generalization of 
the o n e - n s  spin-boson Hamiltonian to which a term describing the interaction between 
pairs of TLS is included. In the representation of localized states, which are taken to 
Fe-. z ccmp!e!e basis Fcr the TLS S - ~ I C P ,  !he Ea,i!!nclac -ay be wrlttcn ( k  = 1) 

H =  -1 (Uku;+A,ku;+ae ,uf )+H,-  U k I u ~ d  
k k c l  

A 

Pauli spin-f matrices have been used, A,* is the bare matrix element for tunnelling 
of the kth TLS between the two localized states with asymmetry parameter 2Uk,  and 
&I is the interaction energy between the kth and the Ith TLS. The term Xka; 
describes the coupling ofthe kth TLS with the phonon field, a, and a: being destruction 
and creation operators, respectively, for a phonon in the mode A with frequency 

TLS and the lattice is taken to be  linear in lattice displacements and site-diagonal. Also, 
only the lowest multiplet of TLS states is taken into account in Hamiltonian (1); such 
a ‘truncated’ Hamiltonian (Sethna 1981) is appropriate if the energy of excited TLS 

states is sufficiently high so that the probability of their being occupied is negligible. 
For strong coupling of TLS with the lattice it is convenient to make a unitary 

transformation 

w A ,  and ykA and iis-iaiiice coupiiiig coiisianis. As iisuz:, the iiitendlon beWeen the 
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which yields 

H =  -x U k g i - x  A,,~[u; ~osh(2~~)-iu:sinh(2~~)]+ H'- 1 J ~ ~ ; U ; + E ,  (3) 
k k k c l  

Jkl is the dressed interaction of the TLS in a pair and is given by 

J k l =  ukl +x oA(ykAy t  + y$A?#A)  for k # 1. (4) 

(the second term is the elastic energy) and Jkk = 0; Eb = -& 0,ly,~1* is the small-polaron 
binding energy. As at low temperatures few phonons are excited, we linearize the 
multiphoton exponential operators in the second term of the Hamiltonian (3) using 
the Bloch-DeDominicis theorem (see e.g. Nakajima et a1 1980); retaining only linear 
terms in ai and a: gives 

cosh(2ik)  = (cosh(2ik)), = exp(- W,) ( 5 0 )  

sinh(2ik)=2Li ,  exp(- W,) ( 5 6 )  

is the thermal average over the phonon field, and exp(- W k )  the Debye- where (.. 
Waller factor 

wk = 2 l " l * A 1 2 ( 2 f i A  + 1) f i A  =[exp(o,/k,T)- I]-' 

k. is the Boltzmann constant and T the temperature. With the approximation (9, we 
arrive at an effective Hamiltonian 

(6) 

from which we have dropped the constant term E,.  The important difference between 
( 1 )  and (6) is that in (6) renormalized matrix elements A x  = Aok exp(- Wk) and renor- 
malized interactions Jkr appear, an effect which can only be obtained if the interaction 
between TLS and the lattice is taken into account in all orders in perturbation theory. 
The Hamiltonian (6) is the same as that obtained by Junker and Wagner (1981) by 
applying to (3) the Bogoliubov inequality 

H =  -z U kui -1 Aku2+2i 1 AkAkui + H L -  Jklu;u; 
k k k k < l  

F S F,,,,+(H - Hcert)'fer') 

Htest and F,.,, being the appropriately chosen test Hamiltonian and the corresponding 
free energy, and retaining, in the variational procedure, only linear terms in phonon 
operators. 

We are interested in the linear response of the system-a cluster of TLS, described 
by the Hamiltonian (6)-to an external perturbation which we take to be of the form 

H ' ( t ) =  -1 vk(t)u;. (7) 
k 

Such a perturbation describes, for example, a coupling to an external electric field. 
We assume the perturbation to be switched on adiabatically at t = -CO and switched 
off abruptly a t  time t = 0, observing the relaxation of the system towards equilibrium 
for times t > O ;  specifically, this means that the time dependence of V k ( t )  in (7) is 

Vk( t )  = VkO( -1) e" 
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e( 1 )  is the step function and E + O+. From the linear response theory it follows that 
the time evolution of the deviation of the statistical-mechanical average of ut, a = 
x, y ,  L, from its thermal equilibrium value, 8(u ; ) ( t )  = (U;)(/) - ( U : ) ,  may be written as 
(see, for example, Nakajima et al 1980, p 107, Zubarev 1960) 

are retarded Green functions ( p  = x, y,  z ) ,  and 
m 

G;f(o) = [-, df e'"'Gtf( I )  (10) 

their Fourier transforms. Also in (9) U : ( / ) ,  etc are operators in the Heisenberg 
representation 

u:(f) =exp(iHt)u; exp(-iHt) 

with H given by equation (6). 

3. Generalized susceptibilities and relaxation rates 

Our aim is to calculate the generalized susceptibilities 

,ytf(o) = -257G;f(o) (11) 

and relaxation rates which characterize the decay of S ( u ; ) ( t )  towards zero. Let us 
denote 

G c f ( m ) = ( ( 4 ;  &" 

4 G ;  U?))" =([ut ,  u f l ) + ( ( [ d ,  HI ;  

The equation of motion for G$(o)  can then be written as 

(12) 

An appropriate decoupling scheme to truncate the generation of higher-order Green 
functions will be necessary in solving equation (12). 

The case of an isolated TLS has been treated by Junker and Wagner (1981). They 
calculated S ( u ' ) ( t )  which describes the relaxation behaviour of the system after 
switching off the external field. We now proceed to the study of the more complex 
case of two coupled two-level centres. 

4. Relaxation of two interacting TLS 

The Hamiltonian for two TLS coupled with one another and with the crystal lattice is 
by (6) equal to 

(6') 

We have set A, = A2 = A and U, = U2 = 0 which is appropriate for a system of identical 
TLS with zero asymmetry parameter, as is the case of unbiased orientational glasses. 

H = -A(u;+ U;)+  2iA(i lu{+ i 2 u ; )  + H, -5u:u;. 
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T h e  configurational space of the Green functions involving only TLS- (called 
henceforth also spin-) coordinates, which for one TLS has dimension 3, has dimension 
15 for two interacting TLS. We exploit the symmetry and choose the basis functions 
to be 

G K L ( ~ ) = ( ( S K ;  S d m  (13) 

where S, and SL mean symmetrized combinations of the spin operators, which we 
take to be the following, for K = 1 to 15: 

( u { + u ; ) / A  (u;+u;)/& (u;u;+ U;uT;)/A (u;u; + u;u;)/& 
(U;-  .:)/A (u;-u;)/& (u;u; - u ; u ; ) / a  (u;u; - u;u;) /A 

(U: - U;) /& (U;+ u;u;)/& (U:+  u;)/a 
(ufu; + u;u;)/& (u;u;-ufu;)/& (u;u; + ufu:)/& .;U;. 

(14) 

The choice of these symmetry-adapted coordinates leads to splitting of the spin 
configuration space, under the action of the equation-oi-morion operations, into smaller 
invariant subspaces. 

The equation of motion for the function G K L ( w )  is derived in appendix A. In the 
derivation, the ordinary Tyablikov decoupling scheme has been applied to the higher- 
order Green functions (see e.g. Parry and Turner 1969) 

((AB; C))=(A)((B; C))+(B)( (A;  C))  (15) 

which we consider to be valid if fluctuations of the operator that is replaced by its 
average value are sufficiently small. This yields the following equation for G K L ( w ) :  

1 2 

j =  I 
w - M -  1 B ’ ( w )  G ( w ) = K  

where the elements of the matrix G ( w )  are G K L ( w )  and the matrices M and B’ are 
given in appendix A. 

Two limits may be treated immediately: 
(i) Two TLS, coupled to one another, in a static lattice potential ( yn = 0). In this 

case, one obtains from equations (16) and (A.8) 

GZ2(w)-f((u;+u;; U ; + U ; ) ) ~  

= -4A[(w2 - 4 A 2 ) ( ~ x ) + 4 A J ( ~ ~ ~ ~  - uYu;)][(w~- E:)(wZ-  E?) ] - ’  (17) 

where we have taken (U:) = (U;) = ( U ” )  and (ufu;) = (ufu;) = 0. Further, we have 
written E, = E f 1. From the excitation spectrum given by the poles of G,,(w) as 
o = I E + , * E _ ,  we may also deduce the energy spectrum of a pair of TLS to be 
w = *E, +J. The average value ( U ;  + U;)  undergoes an undamped oscillatory motion. 
From equations (8) and (17) we find 

6 ( d + U X t )  

= ( VA/EJ)[((~”)+ DIE:) c ~ s ( E + ~ )  - D I E ? )  COS(E_~)]  

= (V/AJ)[(J/k.T) cos(2A2t/J)+ (A/J)’ cos(2Jt)l (18) 

D =  -4A[A(u~)+~(u:u~-u;u~)].  
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In  the last expression in (18), the average values of the spin operators were taken with 
respect to the Hamiltonian (6') without the spin-lattice coupling term 

Ho= -A(u;+u;)+ H L - J u ; u ;  

a n d f o r A < < J , J / k , T % l  andA/k .Tc l .  

with equation (8) yield, for example, 
(ii) In the case of non-interacting TLS ( J = O ) ,  equations (16) and (A.7), together 

which agrees with the calculation by Junker and Wagner (1981). Therefrom the damping 
constant, i.e. the inverse of the relaxation time for the reorientation of an  isolated TLS, 

may be deduced. In the Debye approximation it is found to be (allowing for the 
possibility of U # 0) 

W = (A2Po/w)E' coth(E'/k,T) 

where Po is given in (250 )  below and E'=- .  
In the following, we consider a pair of TLS, both coupled among themselves and 

with the lattice vibrations, for the case A<< J. Retaining terms up to the second order 
in A, we arrive, after some calculation, at the following expression for G Z 2 ( w ) :  

G22(w)  = 4A{A2(u") -2A[2J+ ( w 2 -  4J2)C3(w)](u;u; - u : v $ ) } / D ( w )  (20) 
where again we have taken (Uyu;) = (u~u;) = 0, and D ( w )  is the determinant of the 
matrix C + ( w ) ,  equal to 

D ( ~ )  = [ ( o  - 2 ~ ~ c , ( ~ ) ) ~  - E:j[(w - 4 ~ : c , ( ~ )  j2 - ( E _  - ~ A ~ C , ( W ) ) ~ ] .  (21) 

From D ( o ) ,  we wish to extract the damping constant-the inverse relaxation time-in 
the motion of a pair of coupled TLS. For A<< J, the poles of D ( w )  are at 

w = *2J*(2A2/J)[1 * JC,(o)] 

w = *2A2/J +4A2[C,(w) F C,(w)] 

(22a) 

(226) 

with 

C,(w)=4 J+(z)(o-z)-' coth(z/2k,T) dz I 
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Up to now, no assumption has been made about the nature of the coupling of the 
TLS with the crystal lattice, except that it is linear in lattice displacements. We now 
assume the TLS to be coupled to the long wavelength acoustic mode phonons, in which 
case the deformation potential approximation for the spin-lattice coupling constants 
may be used, with yh oc l / J w , .  Furthermore, we take the Debye approximation for the 
lattice vibrations. The spectral functions J * ( z )  can then be easily calculated and are 
found to be 

J + ( z )  = ( z / 8 ~ ~ ) [ P o * p ~ ( R ) l  (25) 

3 

P,(R)= 2 ~,~(V'o,l~,I~cos(p,.R)), 

(25b) 

Here, up are sound velocities corresponding to the three acoustic branches p = 1,2,3 
of rhe phonon specrrum; in the last expression, we have set, for the sake of simplicity, 
uiong = U,,,,, = U ;  (. . .), denotes the average over the directions of the wavevector q, V' 
is the volume of the crystal, To is the temperature characterizing the strength of the 
spin-lattice coupling, above which the multiphonon processes become important (Pirc 
et al  1966, Dick 1977, Sander and Shore 1971) and R = 1RI is the distance between 
the TLS in the pair. 

y = ,  

= -(3P,/(zR/ ~ ) ~ ) [ c o s ( z R /  U) - sin(2R/ u)/(zR/u)]. 

In order to get the relaxation rates, we calculate 

C4(w i i q ) =  TirJ+(,(w) coth(w/2k8T) 

=F( iw/2r ) [Po+ P,(R)] coth(w/2kBT) ( 2 6 )  
where we have neglected the real part 

J+(z ) (w  - z)-' ~ 0 t h ( ~ / 2 k , T )  dz. f 
We can write the first factor in (21) at w f i q  as 

[ w - 25 + i W,( w)][o + 25 * i W,(w)l 

with W,(w)=(A2/r)[Po+P,(R)] coth(w/2kBT). The Green function G,,(w) has a 
resonant behaviour around w = +25. So we identify the damping constant w,  = 
W,(w =25) with the inverse relaxation time, thus obtaining 

W, =(2A25/v)[Po+P2,(R)] coth(J/k.T). (27a) 
In a similar manner, we find, from the second factor in (21), the other relaxation rate 

W2 = (2A"/rJ2)[Po- P2,z,,(R)] coth(A2/k,TJ). (276) 
The approximations made in arriving at the expressions (27) result in giving the same 
results as obtained from the golden rule calculation. 

5. Conclusions 

In the present article, the dynamics of pairs of coupled two-level tunnelling systems 
has been studied, and longitudinal susceptibility and the relaxation rates for reorienta. 
tional processes of pairs have been calculated. 
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In view of the fact that two-level centres have been studied in the present paper, 
results of our calculation cannot be compared directly, in a quantitative way, with 
those obtained experimentally by studying more complex multilevel systems. The 
calculations give, however, better and more complete insight into the rather complicated 
mechanism of the behaviour of coupled pairs of centres. 

The experiments performed by Potter and Anderson (1981) and Moy et al (1983) 
could be explained by the assumption of simultaneous reorientation of coupled pairs 
of centres. There is, therefore, an intermediate range of concentration of the centres- 
between the dilute limit where no cooperative features appear, and the higher concentra- 
tion case where large clusters of interacting tunnelling units are formed to determine 
the macroscopic properties of the material-where the formation of pairs of interacting 
centres manifests itself through some observable macroscopic properties. It could be 
speculated that after pairs, in addition triples, four-member clusters and so forth are 
formed. As the effects due to pairs go as the square of the concentration, and those 
due to triples as the third power, etc. it may not be possible, however, to detect the 
small clusters, with exception of pairs, because it is the very large clusters which begin 
to govern the behaviour of the system of the centres before the concentration grows 
sufficiently high for the smaller clusters to be detectable. 

It is therefore possible that the dynamics of pairs of coupled centres might have 
some special importance as the only detectable (or at least the only one detected up  
to now) intermediate step between the system of isolated centres and the system of 
interacting centres. 
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Appendix A 

Let us denote 

W K L ( w ) = ( ( h K ;  SL)) i = 1 , 2 .  

The equation of motion for G ( w )  can then be written 
2 

wG(w)=K+MG(w)+2iA N'%'(w) (A.2) 

where G, 9' and K are matrices with elements GKL, 9 k L  and K K L = ( [ S K ,  SJ, 
respectively. The matrix M may be written as a direct sum 

M = M , O M , O M 2 @ M , O 0 ,  (A.3) 

I = ,  

0 2iA -2iJ 0 
-2iA 0 0 0 
2iJ 0 0 -2iA 
0 0 2iA 0 

M, = 
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M , =  
0 2iJ 0 

-2iJ  0 4iA 
0 -4iA 0 

0 0 0 0 0 0 0  
* l 0 l 0 0 0 0  

0 0 0 0 - 1 - 1  2 
0 * 1  0 - 1  0 0 0 .  
0 0 0 0 0 0 0  

#‘.2 = 
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4. As we are primarily interested in ((U;; u ; ) ) ~ ,  only C' need be known. C' are the 
following 4 x 4 matrices: 

w -2iA 2iJ 0 
2iA w-4A2C: -4A'C; -4iA2C; 
- 2 3  -4A2C: w-4A2C: 2iA(1+2ACf) 

0 4iA2C; -2iA(l+2AC;) w -4A2C: 

(A.8) C'= 

C;=8AJxSE,,(X:*X:) 
A 

c: =x [ (Q&, -4J2S,,) + 3  (-+')I 1 (sc: *X:) w + w ,  0 - w *  

C;=4Ax R E , A ( X Y i X : )  

C?=X [ ( Q , . * + Q E , * ) ~ : ~ ( Q , , *  -QE,*)X:I 

C :  = C: -(2A/J)C; 

Q T , ~ ( w )  = ( w  + w A ) [ ( w  + w , ) ~ -  4T2]-'+(w - w,,)[(w -U,,), -4T2]-' 

RT,,(w) = [ ( U  + wA)2-4T2]-1+ [ ( w  - w A ) 2  -4T2]-' 

ST.A(O) = { ( w  + w A ) [ ( w  +wA)'-4T2]}-l+{(w - w A ) [ ( w  - w A ) ,  -4T2]}-' 

T = J , E  E =J?Tz 
X:= ly*/2(2ri,+ 1) 
yp -~ 

where R = RI - R, ,  R,  and R, being positions of the two interacting TIS. For con- 
venience of writing, the argument has been dropped in C l ( w )  for j =  1 to 6 ,  and in 
.QT.*(w), RT , , (o )  and ST.*(w) i n  (A.9). 

A - ; ( 2 i ~ +  l ) ( ~ i n & +  YTAY~L)= IyA2(2fi~+ 1)  COS(^* R )  

(A.9) 

(A.lO) 
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